Chapter 12

Conclusions

After more than 20 years of work we find ourselves at the point where the construction of ESS will begin. This comes about thanks to the dedication of countless hundreds, and perhaps thousands, of people who have contributed to bringing the project to where it is today. The publication in 2013 of the Technical Design Report demonstrates the fruits of that work – the scientific drive, the technological inventiveness, the administrative determination. We could not have reached this point without the support of our funding bodies and, ultimately, of the taxpayers who support the funding bodies. We are well aware of the responsibility we carry. We will deliver.

The TDR comes one year after the Conceptual Design Report (CDR) was published. It is not simply one year advanced from the CDR, but rather contains the work, the studies and the designs contributed by perhaps four times as many people as contributed to the CDR. There has been a multiplicative process in play. Equally well, whilst the CDR was more or less a stand-alone document, the TDR is but one of the whole sheaf of documents of more than one thousand pages that together represent the current state of knowledge. They in turn stand on the foundation studies and technical reports that have been produced over the last few years in Lund, in the laboratories of our partner countries and indeed around the world.

This body of knowledge has reached a certain state of maturity. It is, thanks to the nature of a scientific facility, incomplete. It will always be incomplete. However it represents what is both necessary and sufficient to allow a clear decision from funding bodies around Europe to officially start the construction phase of ESS.

As Ivan Turgenev said:

If we wait for the moment when everything, absolutely everything is ready, we shall never begin.

It is time to begin!
Bibliography


[323] ‘ITER materials assessment report (MAR).’ ITER Doc. G 74 MA 10 01-07-11 W0.3 (internal project document distributed to the ITER participants).


[417] C. Perret. ‘Sicherheitsbericht zum MEGAPIE-experiment an einem target mit flussigem blei-
bismuth-eutektikum in der neuronenquelle SINQ des PSI-west.’ Technical report, Paul Scherrer
Institute (PSI), 2002.

[418] S. Gammino et al. ‘Tests of the Versatile Ion Source (VIS) for high power proton beam production.’ In
19th International Workshop on ECR Ion Sources, ECRIS 2010, Proceedings, MOPOT012. Grenoble,
2010.

[419] R. Gobin et al. ‘High intensity ECR ion source (H+, D+, H−) developments at CEA/Saclay.’ Review

[420] L. M. Young. ‘Operations of the LEDA resonantly coupled RFQ.’ In Particle Accelerator Conference,


[422] ANSYS. ‘Product description for Fluent simulation software.’ http://www.ansys.com/Products/
Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent, last ac-
essed 21 Jan 2013.

[423] European Spallation Source. ‘ESS parameter tables.’ https://bled.esss.dk/ParametersEditor/

2008.

[425] F. Gerigk et al. ‘Choice of frequency, gradient and temperature for a superconducting proton linac.’

[426] M. Harrison, S. Peggs, et al. ‘ESS Frequency Advisory Board report.’ Internal Report ESS-doc-250-
v1, European Spallation Source, Jul 2010.

[427] M. Eshraqi et al. ‘Design and beam dynamics study of hybrid ESS linac.’ In IPAC2011 Proceedings,
WEPS062. 2011.

[428] A. Ponton. ‘Investigations of different pole tips geometries for the ESS RFQ, part 1.’ ESS AD
Technical Notes ESS/AD/0009, European Spallation Source, March 2011.

[429] C. K. Allen and T. P. Wangler. ‘Beam halo definitions based upon moments of the particle distri-

1996.

[431] A. I. S. Holm et al. ‘The high energy beam transport system for the European Spallation Source.’

[432] R. Duperrier et al. ‘CEA Saclay codes review for high intensities linacs computations.’ In Interna-

2012.

[434] M. Eshraqi et al. ‘End to end beam dynamics of the ESS linac.’ In IPAC 2012 Proceedings, TH-


In Proceedings of the 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-
Brightness Hadron Beams, TUO3B02. 2012.


[461] O. Gonzalez et al. ‘Preliminary electromagnetic design of the re-bunching RF cavities for the ESS MEBT.’ ESS AD Technical Note ESS/AD/0036, European Spallation Source, Mar 2012.

[462] O. Gonzalez et al. ‘Electromagnetic design of the tuning system for the re-bunching cavities of the ESS MEBT.’ ESS AD Technical Note ESS/AD/0035, European Spallation Source, Mar 2012.


[479] G. Olry et al. ‘Spoke cavity RF design.’ Internal Report TR-ADU.1.4.2.2.8, Institut de Physique Nucléaire d’Orsay, 2012.


[490] G. Devanz et al. ‘High power pulsed tests of a beta=0.5 5-cell 704 MHz superconducting cavity.’ In 15th International Conference on RF Superconductivity, SRF 2011, Proceedings, TUP002, page 1459. 2011.


A. Kelic et al. ‘ABLA07 - towards a complete description of the decay channels of a nuclear system from spontaneous fission to multifragmentation.’ In Contribution to the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, NDS-530, page 181. IAEA INDC, 2008.


[657] K. Andersson et al. ‘Inhalation and ingestion doses from the most important potential contaminants from routine airborne releases at ESS.’ Technical report EDMS 1225821, European Spallation Source and DTU Nutech, Technical University of Denmark, 2012.


[661] K. G. Andersson and S. P. Nielsen. ‘External doses from the most important potential contaminants from routine airborne releases at ESS.’ EDMS 1259513, European Spallation Source and DTU Nutech, Technical University of Denmark, 2012.
---


